
Fundamental Laws of Fundamental Laws of 

ElectrostaticsElectrostatics
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Fundamental Laws of Fundamental Laws of 

MagnetostaticsMagnetostatics

�� Integral formIntegral form �� Differential formDifferential form
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Electrostatic, Magnetostatic, and Electrostatic, Magnetostatic, and 

Electromagnetostatic FieldsElectromagnetostatic Fields

�� In the static case (no time variation), the electric In the static case (no time variation), the electric 

field (specified by field (specified by EE and and DD) and the magnetic ) and the magnetic 

field (specified by field (specified by BB and and HH) are described by ) are described by 
separate and independent sets of equations.separate and independent sets of equations.
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separate and independent sets of equations.separate and independent sets of equations.

�� In a conducting medium, both electrostatic and In a conducting medium, both electrostatic and 

magnetostatic fields can exist, and are coupled magnetostatic fields can exist, and are coupled 

through the Ohm’s law (through the Ohm’s law (JJ = = σσEE).  Such a ).  Such a 

situation is called situation is called electromagnetostaticelectromagnetostatic..



The Three Experimental Pillars The Three Experimental Pillars 

of Electromagneticsof Electromagnetics

�� Electric charges attract/repel each other as Electric charges attract/repel each other as 

described by described by Coulomb’s lawCoulomb’s law..

�� CurrentCurrent--carrying wires attract/repel each other carrying wires attract/repel each other 

as described by as described by Ampere’s law of forceAmpere’s law of force..
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as described by as described by Ampere’s law of forceAmpere’s law of force..

�� Magnetic fields that change with time induce Magnetic fields that change with time induce 

electromotive force as described by electromotive force as described by Faraday’s Faraday’s 
lawlaw..



Faraday’s ExperimentFaraday’s Experiment

switch

toroidal iron
core

compass
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battery

primary
coil

secondary
coil



Faraday’s Experiment (Cont’d)Faraday’s Experiment (Cont’d)

�� Upon closing the switch, current begins to flow Upon closing the switch, current begins to flow 
in the in the primary coilprimary coil..

�� A momentary deflection of the A momentary deflection of the compasscompass needleneedle
indicates a brief surge of current flowing in the indicates a brief surge of current flowing in the 
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indicates a brief surge of current flowing in the indicates a brief surge of current flowing in the 
secondary coilsecondary coil..

�� The The compass needlecompass needlequickly settles back to quickly settles back to 
zero.zero.

�� Upon opening the switch, another brief Upon opening the switch, another brief 
deflection of the deflection of the compass needlecompass needleis observed.is observed.



Faraday’s Law of Faraday’s Law of 

Electromagnetic InductionElectromagnetic Induction

�� “The electromotive force induced around a “The electromotive force induced around a 

closed loop closed loop CC is equal to the time rate of is equal to the time rate of 
decrease of the magnetic flux linking the loop.”decrease of the magnetic flux linking the loop.”
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Faraday’s Law of Electromagnetic Faraday’s Law of Electromagnetic 

Induction (Cont’d)Induction (Cont’d)

∫ ⋅=Φ
S

sdB
• S is any surface 
bounded by C

∫ ⋅=ind ldEV
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Faraday’s Law (Cont’d)Faraday’s Law (Cont’d)

∫∫ ⋅×∇=⋅
SC

sdEldE

Stokes’s theorem
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Faraday’s Law (Cont’d)Faraday’s Law (Cont’d)

�� Since the above must hold for any Since the above must hold for any SS, we have, we have

differential form 
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Faraday’s Law (Cont’d)Faraday’s Law (Cont’d)

�� Faraday’s law states that a changing Faraday’s law states that a changing 

magnetic field induces an electric field.magnetic field induces an electric field.

�� The induced electric field is The induced electric field is nonnon--
conservativeconservative
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conservativeconservative..



Lenz’s LawLenz’s Law

�� “The sense of the emf induced by the time“The sense of the emf induced by the time--

varying magnetic flux is such that any current it varying magnetic flux is such that any current it 

produces tends to set up a magnetic field that produces tends to set up a magnetic field that 

opposes the opposes the changechange in the original magnetic in the original magnetic 
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opposes the opposes the changechange in the original magnetic in the original magnetic 

field.”field.”

�� Lenz’s law is a consequence of conservation of Lenz’s law is a consequence of conservation of 

energy.energy.

�� Lenz’s law explains the minus sign in Faraday’s Lenz’s law explains the minus sign in Faraday’s 

law.law.



Faraday’s LawFaraday’s Law

�� “The electromotive force induced around a “The electromotive force induced around a 

closed loop closed loop CC is equal to the time rate of is equal to the time rate of 
decrease of the magnetic flux linking the decrease of the magnetic flux linking the 

loop.”loop.”
dΦ
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�� For a coil of N tightly wound turnsFor a coil of N tightly wound turns

dt

d
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∫ ⋅=Φ
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sdB

Faraday’s Law (Cont’d)Faraday’s Law (Cont’d)
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Faraday’s Law (Cont’d)Faraday’s Law (Cont’d)

�� Faraday’s law applies to situations whereFaraday’s law applies to situations where

�� (1) the (1) the BB--field is a function of timefield is a function of time

�� (2) (2) ddssis a function of timeis a function of time
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�� (3) (3) BB and and ddssare functions of timeare functions of time



�� The differential form of Ampere’s law in The differential form of Ampere’s law in 

the static case isthe static case is

JH =×∇

Ampere’s Law and the Continuity Ampere’s Law and the Continuity 

EquationEquation
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�� The continuity equation isThe continuity equation is

0=
∂
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q
J ev



Ampere’s Law and the Continuity Ampere’s Law and the Continuity 

Equation (Cont’d)Equation (Cont’d)

�� In the timeIn the time--varying case, Ampere’s law in varying case, Ampere’s law in 

the above form is inconsistent with the the above form is inconsistent with the 

continuity equationcontinuity equation
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( ) 0=×∇⋅∇=⋅∇ HJ



Ampere’s Law and the Continuity Ampere’s Law and the Continuity 

Equation (Cont’d)Equation (Cont’d)

�� To resolve this inconsistency, Maxwell To resolve this inconsistency, Maxwell 

modified Ampere’s law to readmodified Ampere’s law to read

D∂
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Ampere’s Law and the Continuity Ampere’s Law and the Continuity 

Equation (Cont’d)Equation (Cont’d)

�� The new form of Ampere’s law is The new form of Ampere’s law is 

consistent with the continuity equation as consistent with the continuity equation as 

well as with the differential form of well as with the differential form of 

Gauss’s lawGauss’s law
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Gauss’s lawGauss’s law
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Displacement CurrentDisplacement Current

�� Ampere’s law can be written asAmpere’s law can be written as

dc JJH +=×∇
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dc JJH +=×∇
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Displacement Current (Cont’d)Displacement Current (Cont’d)

�� Displacement currentDisplacement currentis the type of current is the type of current 
that flows between the plates of a capacitor.that flows between the plates of a capacitor.

�� Displacement currentDisplacement currentis the mechanism is the mechanism 
which allows electromagnetic waves to which allows electromagnetic waves to 

21

which allows electromagnetic waves to which allows electromagnetic waves to 
propagate in a nonpropagate in a non--conducting medium.conducting medium.

�� Displacement currentDisplacement currentis a consequence of is a consequence of 
the three experimental pillars of the three experimental pillars of 
electromagnetics.electromagnetics.



Displacement Current in a Displacement Current in a 

CapacitorCapacitor
�� Consider a parallelConsider a parallel--plate capacitor with plates of plate capacitor with plates of 

area area AA separated by a dielectric of permittivity separated by a dielectric of permittivity εε
and thickness and thickness dd and connected to an and connected to an acac
generator:generator:
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Displacement Current in a Displacement Current in a 

Capacitor (Cont’d)Capacitor (Cont’d)
�� The electric field and displacement flux The electric field and displacement flux 

density in the capacitor is given bydensity in the capacitor is given by

t
d

V
a

d

tv
aE zz ωcosˆ

)(
ˆ 0−=−= • assume 

fringing is 
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�� The displacement current density is The displacement current density is 
given bygiven by

t
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aED
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ddd tV
A

AJsdJi −=−=⋅= ∫ ωωε
sin0

Displacement Current in a Displacement Current in a 

Capacitor (Cont’d)Capacitor (Cont’d)

�� The displacement current is given byThe displacement current is given by
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Maxwell’s Equations in Differential Form for Maxwell’s Equations in Differential Form for 

TimeTime--Harmonic Fields in Simple MediumHarmonic Fields in Simple Medium

( )
( )σωε

σωµ

ie

im

q
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Maxwell’s Curl Equations for TimeMaxwell’s Curl Equations for Time--Harmonic Harmonic 

Fields in Simple Medium Using Complex Fields in Simple Medium Using Complex 

Permittivity and PermeabilityPermittivity and Permeability

KHjE −−=×∇ ωµ

complex
permeability
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Overview of WavesOverview of Waves

�� A A wavewaveis a pattern of values in space that is a pattern of values in space that 
appear to move as time evolves.appear to move as time evolves.

�� A A wavewaveis a solution to a is a solution to a wave equationwave equation..
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�� Examples of waves include water waves, Examples of waves include water waves, 

sound waves, seismic waves, and voltage sound waves, seismic waves, and voltage 

and current waves on transmission lines. and current waves on transmission lines. 



Overview of Waves (Cont’d)Overview of Waves (Cont’d)

�� Wave phenomena result from an exchange between Wave phenomena result from an exchange between 

two different forms of energy such that the time rate two different forms of energy such that the time rate 

of change in one form leads to a spatial change in of change in one form leads to a spatial change in 

the other.the other.
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�� Waves possessWaves possess

�� no massno mass

�� energyenergy

�� momentummomentum

�� velocityvelocity



TimeTime--Domain Maxwell’s Domain Maxwell’s 

Equations in Differential FormEquations in Differential Form
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TimeTime--Domain Maxwell’s Equations in Domain Maxwell’s Equations in 

Differential Form for a Simple MediumDifferential Form for a Simple Medium

µσ qH =⋅∇∂−+−=×∇

HKEJHBED mcc σσµε ====
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TimeTime--Domain Maxwell’s Equations in Differential Form for a Domain Maxwell’s Equations in Differential Form for a 

Simple, SourceSimple, Source--Free, and Lossless MediumFree, and Lossless Medium

0=⋅∇∂−=×∇ E
H

E µ

000 ====== mmvevii qqKJ σσ

31

0

0

=⋅∇
∂
∂=×∇

=⋅∇
∂

∂−=×∇

H
t

E
H

E
t

H
E

ε

µ



TimeTime--Domain Maxwell’s Equations in Differential Form for a Domain Maxwell’s Equations in Differential Form for a 

Simple, SourceSimple, Source--Free, and Lossless MediumFree, and Lossless Medium

�� Obviously, there must be a source for the Obviously, there must be a source for the 

field somewhere.field somewhere.

�� However, we are looking at the properties However, we are looking at the properties 

of waves in a region far from the source.of waves in a region far from the source.

32

of waves in a region far from the source.of waves in a region far from the source.



Derivation of Wave Equations for Electromagnetic Waves Derivation of Wave Equations for Electromagnetic Waves 

in a Simple, Sourcein a Simple, Source--Free, Lossless MediumFree, Lossless Medium
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Wave Equations for Electromagnetic Waves Wave Equations for Electromagnetic Waves 

in a Simple, Sourcein a Simple, Source--Free, Lossless MediumFree, Lossless Medium

0
2

2
2 =

∂
∂−∇

t

E
E µε

�� The wave equations are The wave equations are 

not independent.not independent.

�� Usually we solve the Usually we solve the 

electric field wave electric field wave 
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electric field wave electric field wave 

equation and determine equation and determine 

HH from from EE using using 
Faraday’s law.Faraday’s law.



Uniform Plane Wave Solutions in Uniform Plane Wave Solutions in 

the Time Domainthe Time Domain
�� A A uniform plane waveuniform plane waveis an electromagnetic is an electromagnetic 

wave in which the electric and magnetic fields wave in which the electric and magnetic fields 

and the direction of propagation are mutually and the direction of propagation are mutually 

orthogonal, and their amplitudes and phases orthogonal, and their amplitudes and phases 
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orthogonal, and their amplitudes and phases orthogonal, and their amplitudes and phases 

are constant over planes perpendicular to the are constant over planes perpendicular to the 

direction of propagation. direction of propagation. 

�� Let us examine a possible plane wave solution Let us examine a possible plane wave solution 

given bygiven by ( )tzEaE xx ,ˆ=



Uniform Plane Wave Solutions Uniform Plane Wave Solutions 

in the Time Domain (Cont’d)in the Time Domain (Cont’d)
�� The wave equation for this field simplifies toThe wave equation for this field simplifies to

0
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t

E
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E xx µε
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�� The general solution to this wave equation isThe general solution to this wave equation is

∂∂ tz

( ) ( ) ( )tvzptvzptzE ppx ++−= 21,



Uniform Plane Wave Solutions in Uniform Plane Wave Solutions in 

the Time Domain (Cont’d)the Time Domain (Cont’d)

�� The functionsThe functions pp11(z(z--vvppt)t) and and pp2 2 (z+v(z+vppt)t)
represent uniform waves propagating in represent uniform waves propagating in 

the the +z+z and and --zzdirections respectively.directions respectively.
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the the +z+z and and --zzdirections respectively.directions respectively.

�� Once the electric field has been Once the electric field has been 

determined from the wave equation, the determined from the wave equation, the 

magnetic field must follow from magnetic field must follow from 

Maxwell’s equations.Maxwell’s equations.



Uniform Plane Wave Solutions in Uniform Plane Wave Solutions in 

the Time Domain (Cont’d)the Time Domain (Cont’d)

�� The The velocity of propagationvelocity of propagationis determined is determined 
solely by the medium:solely by the medium:

1=v
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�� The functions The functions pp11 and and pp22 are determined by are determined by 
the source and the other boundary the source and the other boundary 

conditions.conditions.

µε
1=pv



Uniform Plane Wave Solutions in Uniform Plane Wave Solutions in 

the Time Domain (Cont’d)the Time Domain (Cont’d)

�� Here we must have Here we must have 

( )tzHaH yy ,ˆ=
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( )yy
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Uniform Plane Wave Solutions in Uniform Plane Wave Solutions in 

the Time Domain (Cont’d)the Time Domain (Cont’d)
�� ηη is the is the intrinsic impedanceintrinsic impedanceof the medium given byof the medium given by

ε
µη =

40

�� Like the velocity of propagation, the intrinsic Like the velocity of propagation, the intrinsic 

impedance is independent of the source and is impedance is independent of the source and is 

determined only by the properties of the medium.determined only by the properties of the medium.

ε



Uniform Plane Wave Solutions Uniform Plane Wave Solutions 

in the Time Domain (Cont’d)in the Time Domain (Cont’d)
�� In free space (vacuum):In free space (vacuum):

×≈= m/s 103 8cvp
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Ω≈=

×≈=

377120

m/s 103

πη
cvp



Uniform Plane Wave Solutions in Uniform Plane Wave Solutions in 

the Time Domain (Cont’d)the Time Domain (Cont’d)

�� Strictly speaking, uniform plane waves can be Strictly speaking, uniform plane waves can be 

produced only by sources of infinite extent.produced only by sources of infinite extent.

�� However, point sources create spherical waves.  However, point sources create spherical waves.  

Locally, a spherical wave looks like a plane wave.Locally, a spherical wave looks like a plane wave.
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Locally, a spherical wave looks like a plane wave.Locally, a spherical wave looks like a plane wave.

�� Thus, an understanding of plane waves is very Thus, an understanding of plane waves is very 

important in the study of electromagnetics.important in the study of electromagnetics.



Uniform Plane Wave Solutions Uniform Plane Wave Solutions 

in the Time Domain (Cont’d)in the Time Domain (Cont’d)
�� Assuming that the source is sinusoidal. We Assuming that the source is sinusoidal. We 

havehave
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( ) ( ) ( )ztCztCtzEx βωβω ++−= coscos, 21

Uniform Plane Wave Solutions Uniform Plane Wave Solutions 

in the Time Domain (Cont’d)in the Time Domain (Cont’d)
�� The electric and magnetic fields are given The electric and magnetic fields are given 

byby
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Uniform Plane Wave Solutions in the Uniform Plane Wave Solutions in the 

Time Domain (Cont’d)Time Domain (Cont’d)

�� The argument of the cosine function is the The argument of the cosine function is the 

called the called the instantaneous phaseinstantaneous phaseof the of the 
field:field:

45

( ) zttz βωφ −=,



Uniform Plane Wave Solutions in Uniform Plane Wave Solutions in 

the Time Domain (Cont’d)the Time Domain (Cont’d)
�� The speed with which a constant value of The speed with which a constant value of 

instantaneous phase travels is called the instantaneous phase travels is called the 

phase velocityphase velocity.  For a .  For a losslesslossless medium, it is medium, it is 
equal to and denoted by the same symbol as equal to and denoted by the same symbol as 

the the velocity of propagationvelocity of propagation..
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the the velocity of propagationvelocity of propagation..
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Uniform Plane Wave Solutions in Uniform Plane Wave Solutions in 

the Time Domain (Cont’d)the Time Domain (Cont’d)

�� The distance along the direction of The distance along the direction of 

propagation over which the instantaneous propagation over which the instantaneous 

phase changes by phase changes by 22ππ radians for a fixed radians for a fixed 

value of time is the value of time is the wavelengthwavelength..
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β
πλπβλ 2

2 =⇒=

value of time is the value of time is the wavelengthwavelength..
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Uniform Plane Wave Solutions in the Uniform Plane Wave Solutions in the 

Time Domain (Cont’d)Time Domain (Cont’d)

�� The The 

wavelengthwavelengthis is 
also the also the 

λ

Function vs. position at a fixed time
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Uniform Plane Wave Solutions in Uniform Plane Wave Solutions in 

the Time Domain (Cont’d)the Time Domain (Cont’d)

�� Relationship between Relationship between wavelengthwavelengthand and 
frequency in free space:frequency in free space:

f

c=λ
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�� Relationship between Relationship between wavelengthwavelengthand and 
frequency in a material medium:frequency in a material medium:

f

f

vp=λ



Uniform Plane Wave Solutions in Uniform Plane Wave Solutions in 

the Time Domain (Cont’d)the Time Domain (Cont’d)

�� ββ is the is the phase constantphase constantand is given byand is given by

ωµεωβ ==
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pv
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rad/m



Uniform Plane Wave Solutions in Uniform Plane Wave Solutions in 

the Time Domain (Cont’d)the Time Domain (Cont’d)

�� In free space (vacuum):In free space (vacuum):

2πωεµωβ ==== k
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Flow of Electromagnetic Power Flow of Electromagnetic Power 

�� Electromagnetic waves transport throughout space Electromagnetic waves transport throughout space 

the energy and momentum arising from a set of the energy and momentum arising from a set of 

charges and currents (the sources).charges and currents (the sources).

�� If the electromagnetic waves interact with another If the electromagnetic waves interact with another 
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If the electromagnetic waves interact with another If the electromagnetic waves interact with another 

set of charges and currents in a receiver, information set of charges and currents in a receiver, information 

(energy) can be delivered from the sources to (energy) can be delivered from the sources to 

another location in space.another location in space.

�� The energy and momentum exchange between The energy and momentum exchange between 

waves and charges and currents is described by the waves and charges and currents is described by the 

Lorentz force equation.Lorentz force equation.



Derivation of Poynting’s Derivation of Poynting’s 

TheoremTheorem

�� Poynting’s theorem concerns the Poynting’s theorem concerns the 

conservation of energy for a given volume conservation of energy for a given volume 

in space.in space.

Poynting’s theorem is a consequence of Poynting’s theorem is a consequence of 
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�� Poynting’s theorem is a consequence of Poynting’s theorem is a consequence of 

Maxwell’s equations.Maxwell’s equations.



Derivation of Poynting’s Theorem in Derivation of Poynting’s Theorem in 

the Time Domain (Cont’d)the Time Domain (Cont’d)

�� TimeTime--Domain Maxwell’s curl equations Domain Maxwell’s curl equations 

in differential formin differential form

B∂
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Derivation of Poynting’s Theorem Derivation of Poynting’s Theorem 

in the Time Domain (Cont’d)in the Time Domain (Cont’d)

�� Recall a vector identityRecall a vector identity

( ) HEEHHE ×∇⋅−×∇⋅=×⋅∇
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�� Furthermore,Furthermore,
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Derivation of Poynting’s Theorem in Derivation of Poynting’s Theorem in 

the Time Domain (Cont’d)the Time Domain (Cont’d)

( )
B

HKHKH

HEEHHE

ci
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Derivation of Poynting’s Theorem Derivation of Poynting’s Theorem 

in the Time Domain (Cont’d)in the Time Domain (Cont’d)

�� Integrating over a volume Integrating over a volume VV bounded by a closed bounded by a closed 

surface surface SS, we have, we have

( ) ∫∫∫ ⋅−








∂
∂⋅+

∂
∂⋅−=⋅+⋅ cii dvJEdv

t

B
H

t

D
EdvKHJE

57

( )∫∫

∫∫∫

×⋅∇−⋅−

 ∂∂

VV

c

V

c

VV

ii

dvHEdvMH

tt



Derivation of Poynting’s Theorem Derivation of Poynting’s Theorem 

in the Time Domain (Cont’d)in the Time Domain (Cont’d)

�� Using the divergence theorem, we obtain the general Using the divergence theorem, we obtain the general 

form of Poynting’s theoremform of Poynting’s theorem

( ) ∫∫∫ ⋅− ∂⋅+∂⋅−=⋅+⋅ BD
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Derivation of Poynting’s Theorem Derivation of Poynting’s Theorem 

in the Time Domain (Cont’d)in the Time Domain (Cont’d)
�� For simple, lossless media, we haveFor simple, lossless media, we have

( )

( )∫
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⋅×−
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�� Note thatNote that

( )2

2

1
A

tt

A
A

t

A
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∂
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∂
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∂
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( )∫ ⋅×−
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sdHE



Derivation of Poynting’s Theorem Derivation of Poynting’s Theorem 

in the Time Domain (Cont’d)in the Time Domain (Cont’d)

�� Hence, we have the form of Poynting’s theorem Hence, we have the form of Poynting’s theorem 

valid in simple, lossless media:valid in simple, lossless media:

∂ 11
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Physical Interpretation of the Physical Interpretation of the 

Terms in Poynting’s TheoremTerms in Poynting’s Theorem

�� The termsThe terms

∫∫ +
V

m

V

dvHdvE 22 σσ

61

represent the represent the instantaneous power instantaneous power 
dissipateddissipatedin the electric and magnetic in the electric and magnetic 
conductivity losses, respectively, in volume conductivity losses, respectively, in volume 

VV..

VV



Physical Interpretation of the Terms Physical Interpretation of the Terms 

in Poynting’s Theorem (Cont’d)in Poynting’s Theorem (Cont’d)

�� The termsThe terms

∫∫ ′′+′′
VV

dvHdvE 22 µωεω
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represent the represent the instantaneous power instantaneous power 
dissipateddissipatedin the polarization and in the polarization and 
magnetization losses, respectively, in magnetization losses, respectively, in 

volume volume VV..

VV



Physical Interpretation of the Terms Physical Interpretation of the Terms 

in Poynting’s Theorem (Cont’d)in Poynting’s Theorem (Cont’d)

�� Recall that the electric energy density is given byRecall that the electric energy density is given by

2

2

1
Ewe ε ′=
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�� Recall that the magnetic energy density is given Recall that the magnetic energy density is given 

by by 

2

2

2

1
Hwm µ′=



Physical Interpretation of the Terms Physical Interpretation of the Terms 

in Poynting’s Theorem (Cont’d)in Poynting’s Theorem (Cont’d)

�� Hence, the terms                              Hence, the terms                              

∫ 
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represent the represent the total electromagnetic total electromagnetic 
energy storedenergy storedin the volume in the volume VV.   .   

V



Physical Interpretation of the Terms Physical Interpretation of the Terms 

in Poynting’s Theorem (Cont’d)in Poynting’s Theorem (Cont’d)

�� The termThe term

( )∫ ⋅×
S

sdHE

65

represents represents the flow of instantaneous the flow of instantaneous 
powerpowerout of the volume out of the volume VV through the through the 

surface surface SS..

S



Physical Interpretation of the Terms Physical Interpretation of the Terms 

in Poynting’s Theorem (Cont’d)in Poynting’s Theorem (Cont’d)

�� The term                              The term                              

( )∫ ⋅+⋅
V

ii dvKHJE
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represents the represents the total electromagnetic total electromagnetic 
energy generated by the sourcesenergy generated by the sourcesin the in the 

volume volume VV.   .   



Physical Interpretation of the Terms in Physical Interpretation of the Terms in 

Poynting’s Theorem (Cont’d)Poynting’s Theorem (Cont’d)

�� In words the Poynting vector can be stated as In words the Poynting vector can be stated as 
“The sum of the power generated by the sources, “The sum of the power generated by the sources, 
the imaginary power (representing the timethe imaginary power (representing the time--rate rate 
of increase) of the stored electric and magnetic of increase) of the stored electric and magnetic 
energies, the power leaving, and the power energies, the power leaving, and the power 
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energies, the power leaving, and the power energies, the power leaving, and the power 
dissipated in the enclosed volume is equal to dissipated in the enclosed volume is equal to 
zero.”zero.”
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Poynting Vector in the Time Poynting Vector in the Time 

DomainDomain

�� We define a new vector called the (instantaneous) We define a new vector called the (instantaneous) 

Poynting vectorPoynting vectorasas

HES ×=
• The Poynting 
vector has units of 
W/m2.
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�� The Poynting vector has the same direction as the The Poynting vector has the same direction as the 

direction of propagation.direction of propagation.

�� The Poynting vector at a point is equivalent to the The Poynting vector at a point is equivalent to the 

power density of the wave at that point.power density of the wave at that point.

HES ×= W/m2.


